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Elementary mechanical behaviour of soils
(POE.C aowl P P TR INP OhCEoT)

* Phase relationships (?&H+ HIPLGTPT)
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Elementary mechanical...

e Stress defn: 2
__ Force(F) T
Q Stress(o) = Areald) Oy
* Terzaghi’s effective stress principle: U‘E1 S
U Total stress (o) = o, ii
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* Further decomposition of effective stress 4

d Total stress (o) =
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Elementary mechanical...

> 2
e Strain defn: I d, T efj
. Change in length(Al) Tor. % 512 £ 59
d Strain(e) = S A% < > Gt St
( ) Length(L) 011_*\0 %ﬁ13ﬁ1 UEs] ‘éf.s__lf" -1
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* Further decomposition of strain N .
Q Strain () = volumetric strain (&,) + 3

deviatoric strain (sq)
e Stresses cause strains

O Effective stress increment (Ao”’)=
stiffness(D) x strain increment (Ag)
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Elementary mechanical...

¢ + otang (Coulomb 1776)
= ¢ + o'tang, + o'tany (Taylor 1948)

The shear strength of soil comes from interparticle cohesion, interparticle
friction and interlocking
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Interparticle contact increases with increasing effective confining pressure and
decreases otherwise
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Pore pressure increase leads to decreasing effective confining pressure and
thus reduced shear strength
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Generation of pore pressure (Ph&-tt @5
VT TTaAPA)
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Undrained monotonic loading of loose/contractive soils (Hl

Undrained Triaxial compression test
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Generation of pore pressure (?het+ @3
VT TTAPA)

* Undrained cyclic loading (H9 0@-8¢ * +aPAA{ 8BS
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Dissipation of pore pressure (¢h&-t1+ @3
NVt TIPAPA)

Darcy’s flow: Discharge is linearly proportional with pressure gradient.
Continued discharge intern leads to reduction in pressure — which we call
dissipation of pore pressure.
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Dissipation of pore pressure (Ph&-t @5
NVt TIPAPA)

Consolidation (01407)- generated pore pressure can dissipate if the
pore fluid can escape from high pressure areas into low pressure areas
leaving the grains to move closer to each other there by reducing the
pore space between them.
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Engineering problems due to generation of
excess pore pressure

* Slope stability, liquefaction (P44t 910P0P o7t T GO
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Deformation
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Engineering problems due to generation of
excess pore pressure

 Embankment failure (29120 €A av 70 1T)

Fill (a>a.)

PNA 02.C L) 4 Ao = Ao’ +Ap 1

Pore pressure increase leads to
decreasing effective confining pressure
and thus reduced shear strength
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Engineering problems due to generation of
pore pressure

* Bearing capacity failure (Perw/l-t 001 04.C a0 é1T)

Footing (eoC11)

/

Pore pressure increase leads to
decreasing effective confining pressure
and thus reduced shear strength
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Engineering problems due to dissipation of
pore pressure

 Embankment (®4d “1£)

Fill (fov-+ avnaT)

;fz;i;ﬂ

Pore pressure increase leads to
decreasing effective confining pressure
and thus reduced shear strength
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Engineering problems due to dissipation of
pore pressure

* Foundation (aow¢-t)- Uniform settlement (@0 HOmT)
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Engineering problems due to dissipation of
pore pressure

* Foundation (aow/t)- Differential settlement (PHOmMT ARTT)

Footing (aoc11)

Ao =Ac'T+Ap



Engineering problems due to dissipation of

pore pressure

* Foundation (aow/+)-Tipping settlement (770704 ¢ 97HaPg°)
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Engineering problems due to dissipation of
pore pressure
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Engineering problems due to dissipation of
pore pressure

 Foundation (a?w/T)- Overhanging loads (+:mAME sprit-T)

Ao =Ac'T+Ap




Theory of consolidation
PANANT 24, hal

* Spring-water system
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Continuity & Consolidation

Let us disregard compressibility of pore water and consider volume change
due to flow:

aq, k 0%p
qZ + aZ dZ qZ +——dZ

| 3 Yw 022
+ d7 Darcy’s law: q =~ ‘ + 1

dz qz
The net volume change (dQ):
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Continuity & Consolidation

The net volume change (Darcy flow):
_ kd*p _ kd%p
addQ = Y dzA = P QO k 9%
q, + y_ﬁ dz
w
dQ k 92p ; dz
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Dimensionless analysis

 Normalizing various variables (Barends,2008)

0*(p/po) /0(p/pPo) H? 1
7a(z/H)2/ a(t/)T) ¢,T N

Flow term Storage term

Question: What does it mean when
a. Nissignificantly smaller than one?
N is significantly higher than one?

Value of N smallf<<st) | =1 | »1____

Implication The flow factor is The flow factor is The flow factor is
large compared to equal to the storage  small compared to
the storage factor factor the storage term

Process stage Start of consolidation Consolidation in full End of consolidation

process




Approximate solution to the 1D
consolidation equation




Approximate solution to the 1D
consolidation equation
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Approximate solution to the 1D
consolidation equation

a%p
=
= —c, f ag/dg/ at Y9272
S
g0 Floy,
/ Letp =pof (Z)f (t)
1 p=—=1[, pof(@f(t)2nrdrdz 1. =—2mpycyf(t) (% (Z)) g rar
zZ=
 _ 12 py L0
2. 0 =nR?py L2 " f(2)dz 2 _nr? Ocvf(t)(af(Z)) )
\\\\A d Cv(m) V'S
o oy _ o),

1 &) 0 fff(z)dz



Approximate solution to the 1D
consolidation equation

a%p
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Approximate solution to the 1D
consolidation equation
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Approximate solution to the 1D
consolidation equation
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Approximate solution to the 1D
consolidation equation
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Approximate solution to the 1D
consolidation equation o 9%
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Approximate solution to the 1D
consolidation equation
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Approximate solution to the 1D
consolidation equation

op d%p
Q@=—C f@dg /at Y 9z2
ge 7 ot v 0z
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Approximate solution to the 1D
consolidation equation
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Terzaghi’s exact solution to the 1D
consolidation equation

o _ 0%
5\0(696 ?t v 0z - P/ Oy,
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Exact solution to the 1D consolidation

equation
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Some limitations of the classical 1DC
Theory

j-1 T ... T, 2
Q p(&,T)/po =§Z<;j)_1 cos|3 (2 — 1)é| exp [— (Fej-) T]

It is not at all logical to aim at a solution of pore pressure as long as our

practical aim is to obtain settlements (Janbu, 1965).
—  PPPRAID- 00457 PHAOMTE a7 ANPT &40 P&+ E@<7 (D3 <14t ATINTTrE P9 AT I heLATP:

The classical theory does not take none-linearity of stress-strain behavior into
account.
—  @RNT® (PFCHL) 724, hrl P8G5 @ PLAT ACED PP HIPLS gt @t PA10IP:=
For nonlinear stress-strain (which is naturally true for soils) the degree of
consolidation has to be obtained from strain-depth distribution (Janbu, 1969).
— P0G TINTNP OMCE SPID- KCED O PG DDl HPPLS h@-PLT PAPT ACTT (HIPLE) PTT T AANT

The total stress can be time dependent.
— @@ BG LH TIE AT AN

Consolidation may not be 1D.
—  R04.C TP CUT NAD-FE W18 2C%T av<e 9P+ ARIAT S TAA:



Janbu’s strain based 1DC Theory

Strain disth t — oo

Qe =g, —eq(1—¢7) — :
Basic strain based differential equation
e
LI < B r-2
d ot = 982 r(r—1)g ¢
W €

Solution
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Janbu’s...

0.0001 0.001 0.01

Degree of consolidation 0%
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Janbu’s...
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Back to engineering
DL, P°h7LNG...

How do we use our knowledge of consolidation to solve
practical problems?
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Applying preloading
ange a\oqavL:

1 Heaping a soil and let the soil under consolidate for sometime
(1 Remove the soil heap
M Implement the actual construction.

1 This improves the bearing capacity of the underlying soil. It also
reduces the consolidation settlement after construction




Applying drains
TO174.4 avmPIP

 |nstall drains to accelerate
the consolidation process and improve the
bearing strength of the soil.
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Applying drains
TN 7240 aPmPIP

* Vacuum preloading to accelerate
the consolidation process
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Asaoka’s observational method
A0S PHNOMT AT ap19P7199.L av L

Basic differential equation:

ap _ _ 9%p
= ot v 952
The solution in terms of pore pressure
QL=
Po _
4 oo (1)1 ((Zj—l)nz) ( (2j-1)%1
nzf:l 2j-1 oS 2h €Xp 4h?2

. . t
For larger values of time, i.e., for % > (0.2 the

higher order terms vanish, and the equation may
be approximated by the first term:

Q2 ~2cos (E) exp (—n—zcvt)

Po i3 2h 4-h2




First order approximation
pavPavg @ vy LA

The strain may then be obtained as:

0 EZP_0(£_1)=

M \po

Po (% o5 (22T _m ) -
M (n COS( 2h )exp( 4h? Cvt) 1)

The displacement is then found by integrating the
strain over the depth:

_ _h _Po _8 —e
Q §=-]) edz = Mh(l HZEXP( C"4h2t))
Simplifying:
8
Q S =5.,(1-8exp(—p1),6 =—,f =

2 A
n — Po
Cvqpz S0 = g 1

First order autoregressive form (in which b =
exp(—pAt))
o Si:a+bsi_1,a=500(1—b)




Asaoka’s graphical method using
first order approximation

dlet us have n+1 settlement * Basis (first order approximation):
observations, ( ug,uq, ..., U, ) OS —adtbS
generated by a constant external " el
load. * From the plot:
O Using these observations plot n d S, = %, b=tané
points (uy, uy_q1)for k=1,2, ..., n on ¢, 4(1-b)
the (u;,u;_, ) coordinate system = e
U The plot will be linear and tends
towards the end of consolidation A A S A B
and therefore enables us to predict 1\ t .
future settlements (note that the \l\ =3
(Ur, Ur_1) plot for the end of will A ‘ B, \\
have a slope of 45 degrees for the . g Cv
end of consolidation.) Ve s

O From the plot of observation points
(up,ur—1) one findsa and 6



Asaoka-Reliability — In a Bayesian
framework

The aim of this part is to adopt the Bayesian framework for the prediction of the parameters a and b =tan0
conditioned on measurements. Asaoka claims that the method has an advantage in that “the predicted value
is given with its reliability”

S(tis1) =a+b-S(t;) + ¢
where €; is a random noise. Asaoka proposes ¢; to be Gaussian distributed with a 0-mean value.
The usual procedure is as follows:

L Assume prior distributions (Asaoka suggested using a Gaussian distribution.) We could also assume
non-informative priors such as uniform distributions, say P(a), P(b), and P(o) if we wish to start from
“I don’t know.”

Varo? 202
a2 is the variance of the measurement errors. The joint likelihood for all observations is the product
of the likelihoods for individual data points, i.e., L(a,b,c|Data) = [[}=; P(S(t;+1)la, b, S(t;), o)
U Find the posterior distributions for a, b and ¢ using Baye’s theorem: P(a, b, o|Data) «
L(a,b,c|Data) - P(a) - P(b) - P(0). The posterior distribution combines the prior beliefs
about a and b with evidence provided by the observed data to give updated estimates of these
parameters.

O Define a likelihood function: P(S(t;+4)|a, b,S(t;),0) = 2 exp (— (GG ) ), where

)

O Predict the ultimate settlement: Sg) =150



Recap

J Elementary mechanical behaviour of soils
J Generation and dissipation of pore pressure

 Engineering problems related to generation and dissipation of
pore pressures

 Theory of consolidation

 Back to engineering... how to use knowledge of consolidation
to solve engineering problems related to generation and
dissipation of pore pressures

] Asaoka’s observational method
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